

# An Example of Staining Cells for Multicolor Flow Cytometry (Greg A. Perry, Ph.D.)

Let's say I want to look at T cell, B cell, Granulocyte and Macrophage populations in the spleens of 4 different mice, and I have the following 5 antibodies:

| Population        | Antigen      | Clone   | Fluorochrome | Dilution (from previous titration) |
|-------------------|--------------|---------|--------------|------------------------------------|
| Helper T cells    | CD4          | GK1.5   | APC          | 1:100                              |
| Cytotoxic T cells | CD8          | 53-6.7  | PerCP        | 1:200                              |
| B Cells           | CD45R (B220) | RA3-6B2 | FITC         | 1:200                              |
| Granulocytes      | Gr1 (Ly6b)   | RA6-8C5 | PE-Cy7       | 1:100                              |
| Macrophages       | CD11b        | M1/70   | Biotin       | 1:50                               |

Notice that one of my antibodies (CD11b) is a biotin conjugate, so I will be using the PE conjugate of StreptAvidin to visualize it on the cytometer.

First I make my 4 spleen cell preparations and adjust each of them to 2x10<sup>7</sup> cells/ml in PBS4. Then I begin the staining process...

## I. Preliminary Steps - Diluting the Antibodies

- A) I have a 5-color panel that I want to stain my samples with, and I know my dilutions.
  - 1) Determine the total number of samples to be stained with each cocktail (4 spleens)
  - 2) Determine the total volume of each cocktail (V<sub>c</sub>) required for the experiment as:

Total Cocktail volume needed  $(V_c) = (4 \times 50 \mu l) + 50 \mu l = 250 \mu l$ 

3) Determine the amount of each antibody needed in the total volume to make the optimal concentration of that antibody (based on previous titration experiments)

I will be making  $250\mu I$  Total Volume of cocktail, so I will need the following amounts of antibody.

| Antigen      | Fluorochrome | Dilution (from previous titration) | Total<br>Volume | Amount<br>Needed |
|--------------|--------------|------------------------------------|-----------------|------------------|
| CD4          | APC          | 1:100                              | 250 μΙ          | 2.5 μl           |
| CD8          | PerCP        | 1:200                              | 250 μΙ          | 1.25 μl          |
| CD45R (B220) | FITC         | 1:200                              | 250 μΙ          | 1.25 μl          |
| Gr1 (Ly6b)   | PE-Cy7       | 1:100                              | 250 μΙ          | 2.5 μl           |
| CD11b        | Biotin       | 1:50                               | 250 μΙ          | 5 µl             |

<u>Note:</u> You can determine the final amount by dividing the Final Volume by the dilution ratio. For example 250/100=2.5; 250/200=1.25, 250/50=5, etc.

4) Add up the volumes from each antibody to get the total volume of antibody (Va)

Total Antibody volume 
$$(V_a) = 2.5 + 1.25 + 1.25 + 2.5 + 5 = 12.5 \mu l$$

5) Determine the amount of PBS4 (V<sub>PBS4</sub>) needed for the cocktail

$$V_{PBS4} = 250 - 12.5 = 237.5 \mu I$$

- 6) Make the cocktail by ...
  - a) adding 237.5µl of PBS4 to a small tube
  - b) adding to the tube ... i.  $2.5\mu l$  of CD4<sup>APC</sup>

    - ii. 1.25µl of CD8<sup>PerCP</sup>
    - iii.  $1.25\mu l$  of B220<sup>FITC</sup>
    - iv. 2.5µl of Gr1<sup>PE-Cy7</sup>
    - v. 5µl of CD11b<sup>Biotin</sup>
- B) I am using a biotin-conjugated primary antibody in this experiment. Six (6) tubes will receive the StreptAvidin-PE solution (4 samples + 2 controls) in step 5 of the staining protocol below. A previous titration has shown that the StreptAvidin-PE should be used at a dilution of 1:50. I need 600μl (6 tubes x 100μl each), so I will make a little bit more (650μl) in case my pipetter is not quite accurate. So I add 13µl of StreptAvidin-PE to 637µl of PBS4 in a small tube.

### II. Controls

For this experiment I will need the following controls...

1. Cells Only

2. Avidin Only

3. FITC Only

4. PE Only

5. PerCP Only

6. PE-Cy7 Only

7. APC Only

The antibodies I will be using are to common antigens, and each of them should be found on normal mouse spleen cells. Therefore, I can use cells for my controls (not CompBeads).

I will need to make up antibody dilutions for most of these controls (#'s 3-7). I will need to use 50µl of each single color antibody dilution in my staining protocol (step 2 below), so I will make a minimum of 100ul for each.

## FITC Only Ab (B220<sup>FITC</sup>)

Dilution is 1:200. My pipette only accurately measures down to 1µl, so I will take out 1µl and add it to 199µl of PBS4. (This results in a total volume of 200µl. I only need to use 50µl, but 200µl is the least amount I can make accurately.)

## PE Only Ab (CD11b Biotin)

Dilution is 1:50. I take out 2µl and add it to 98µl of PBS4.

# PerCP Only Ab (CD8 PerCP)

Dilution is 1:200. As with the B220<sup>FITC</sup> antibody (FITC Only Ab) above, I take out 1µl and add it to 199ul of PBS4.

## PE-Cy7 Only Ab (Gr1<sup>PE-Cy7</sup>)

Dilution is 1:100. I take out 1µl and add it to 99µl of PBS4.

## APC Only Ab (CD4APC)

Dilution is 1:100. I take out 1µl and add it to 99µl of PBS4.

#### **III. Staining Protocol**

In this experiment I will have 4 mouse spleens each labeled with a 5-color cocktail, and 7 controls. Thus 11 total tubes (4+7=11). They will be labeled as follows...

| 1. | Cells Only  | 7.  | APC Only |
|----|-------------|-----|----------|
| 2. | Avidin Only | 8.  | Spleen 1 |
| 3. | FITC Only   | 9.  | Spleen 2 |
| 4. | PE Only     | 10. | Spleen 3 |
| 5. | PerCP Only  | 11. | Spleen 4 |
| 6. | PE-Cy7 Only |     | •        |

I have made a table of what goes into each tube and placed it at the end of the protocol to summarize each tubes contents.

For convenience I will use spleen cells from Mouse 1 (a "normal" mouse) for all 7 control samples.

- 1) Place 50µl of the cells from ...
  - a. Mouse 1 into "Cells only", "Avidin only", "FITC only", "PE only", "PerCP only", "PE-Cy7 only", "APC only" and "Mouse 1" tubes.
  - b. Mouse 2 into "Mouse 2" tube.
  - c. Mouse 3 into "Mouse 3" tube.
  - d. Mouse 4 into "Mouse 4" tube.
- 2) Add ...
  - a.  $50\mu l$  of the antibody cocktail to "Mouse 1", "Mouse 2", "Mouse 3" and "Mouse 4" tubes.
  - b. 50µl of FITC Only Ab antibody to "FITC Only" tube
  - c. 50µl of PE Only Ab antibody to "PE Only" tube
  - d.  $50\mu l$  of PerCP Only Ab antibody to "PerCP Only" tube
  - e. 50µl of PE-Cy7 Only Ab antibody to "PE-Cy7 Only" tube
  - f. 50µl of APC Only Ab antibody to "APC Only" tube
  - g. 50µl of PBS4 to "Cells Only" tube
  - h. 50µl of PBS4 to "Avidin Only" tube
- 3) Incubate 30 minutes in the dark on ice.
- 4) Wash
- a. Centrifuge for 3 minutes at 300g and 4°C.
- b. Remove the supernatant from each tube with vacuum aspiration and a pulled Pasteur pipette.
- c. Wash each tube by resuspending in 200µl of fresh cold PBS4.
- d. Centrifuge for 3 minutes at 300g and 4°C.
- e. Remove the supernatant from each tube with vacuum aspiration and a pulled Pasteur pipette.
- f. Wash each tube by resuspending in 200µl of fresh cold PBS4.
- g. Centrifuge for 3 minutes at 300g and 4°C.
- h. Remove the supernatant from each tube with vacuum aspiration and a pulled Pasteur pipette.
- 5) Add...
  - a.  $100\mu l$  of the diluted StreptAvidin-PE to the "Avidin Only", "PE Only", "Mouse 1", "Mouse 2", "Mouse 3" and "Mouse 4" tubes.
  - b. 100μl of PBS4 to the "Cells Only", "FITC Only", "PerCP Only", "PE-Cy7 Only" and "APC Only" tubes.
- 6) Incubate 5-15 minutes in the dark on ice.
- 7) Wash
- a. Centrifuge for 3 minutes at 300g and 4°C.
- b. Remove the supernatant from each tube with vacuum aspiration and a pulled Pasteur pipette.

- c. Wash each tube by resuspending in  $200\mu l$  of fresh cold PBS4.
- d. Centrifuge for 3 minutes at 300g and 4°C.
- e. Remove the supernatant from each tube with vacuum aspiration and a pulled Pasteur pipette.
- f. Wash each tube by resuspending in 200µl of fresh cold PBS4.
- g. Centrifuge for 3 minutes at 300g and 4°C.
- h. Remove the supernatant from each tube with vacuum aspiration and a pulled Pasteur pipette.
- 8) Resuspend the cells in  $500\mu l$  of FACSfix.
- 9) Store samples covered and refrigerated prior to analysis. Samples are best analyzed within 48 hours of completion of staining protocol.

### What Goes Into Each Tube

| Tube        | Step 1: 50µl cells from | Step 2: 50μl   | Step 5: 100µl   |
|-------------|-------------------------|----------------|-----------------|
| Cells Only  | Mouse 1                 | PBS4           | PBS4            |
| Avidin Only | Mouse 1                 | PBS4           | PE-StreptAvidin |
| FITC Only   | Mouse 1                 | FITC Only Ab   | PBS4            |
| PE Only     | Mouse 1                 | PE Only Ab     | PE-StreptAvidin |
| PerCP Only  | Mouse 1                 | PerCP Only Ab  | PBS4            |
| PE-Cy7 Only | Mouse 1                 | PE-Cy7 Only Ab | PBS4            |
| APC Only    | Mouse 1                 | APC Only Ab    | PBS4            |
| Mouse 1     | Mouse 1                 | Cocktail       | PE-StreptAvidin |
| Mouse 2     | Mouse 2                 | Cocktail       | PE-StreptAvidin |
| Mouse 3     | Mouse 3                 | Cocktail       | PE-StreptAvidin |
| Mouse 4     | Mouse 4                 | Cocktail       | PE-StreptAvidin |